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a  b  s  t  r  a  c  t

Because  anxiety  disorders  appear  to follow  developmental  trajectories  that  begin  early
in development,  it may  be  useful  to examine  the  neurodevelopmental  correlates  of  spe-
cific cognitive  processes  that  have  been  linked  to anxiety.  For  instance,  the  error-related
negativity  (ERN)  is  a  negative  deflection  in  the  event-related  potential  that is maximal
approximately  50 ms following  the  commission  of  errors  at  fronto-central  electrode  sites,
and has  consistently  been  found  to  be more  negative  among  anxious  adults.  Much  less,
however,  is  known  about  anxiety  and  the  ERN  in  children—especially  when  this  relation-
ship  develops.  We  recorded  event-related  potentials  (ERPs)  while  55  children  aged  8–13
performed  an  arrow  version  of the flankers  task.  Parents  and  children  both  reported  on  chil-
dren’s anxiety.  Results  suggest  that the  relationship  between  the  ERN  and  anxiety  changes
as a  function  of  age.  Among  older  children,  a  larger  (i.e., more  negative)  ERN  was  signifi-
evelopment cantly  related  to  increased  anxiety  based  on  parent  report.  Although  the  relationship  was
less robust,  the  relationship  between  ERN  and  anxiety  was  opposite  among  younger  chil-
dren. These  results  are  discussed  in  terms  of  existing  work  on  anxiety  and  the  ERN, and
the need  for  longitudinal  and  developmental  studies  on the relationship  between  ERN  and
anxiety.

© 2011 Elsevier Ltd. All rights reserved.
Clinical anxiety appears to follow a developmental
athway beginning early in life. For instance, research sug-
ests  that infants who react negatively to novel stimuli
end to become toddlers who avoid new social expe-
iences (Fox et al., 2005). Longitudinal studies imply
ontinuity between adolescent and adult anxiety disorders
Birmaher et al., 1997a,b) and early infant and child-
ood behavioral inhibition has been shown to predict
he onset of clinically significant anxiety later in ado-
escence (Biederman et al., 2001; Chronis-Tuscano et al.,

009;  Gladstone et al., 2005; McDermott et al., 2009).
ndeed, certain components of anxiety themselves may
ollow  developmental transitions, such as fearful shyness
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expanding to include self-conscious shyness (Crozier and
Burnham,  1990). Furthermore, shyness in middle child-
hood  has been suggested to become increasingly associated
with  inhibition in the presence of others (Cheek et al., 1985)
and  with above normal self-concern (Buss, 1980). Although
specific developmental pathways are not fully under-
stood, anxiety disorders appear to follow developmental
trajectories that begin relatively early in development
(Pine, 2007).

Neural and cognitive development proceeds rapidly
throughout middle childhood and into adolescence, and
it  may  be possible to identify developmental changes
in neural activity that relate to normative versus anx-

ious  trajectories of development (Casey et al., 2005). In
the  context of this developmental cognitive neuroscience
perspective, it may  be fruitful to measure the neurode-
velopment of specific cognitive processes that have been

dx.doi.org/10.1016/j.dcn.2011.09.005
http://www.sciencedirect.com/science/journal/18789293
http://www.elsevier.com/locate/dcn
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linked to anxiety disorders in adulthood (Pine, 2007).
This approach could help identify developmental periods
when  measures of neural activity previously studied in
adults  begin to relate to individual differences in anxiety in
children.

A  growing body of research in adult anxiety disorders
has focused on neural correlates of error detection reflected
in  the event-related potential (ERP). In particular, the error-
related  negativity (ERN) is an increased negative deflection
occurring approximately 50 ms  after the commission of
errors  compared to correct responses in speeded reaction
time  tasks (Falkenstein et al., 1991; Gehring et al., 1993;
Hajcak et al., 2005). The ERN reflects the activation of a
generic  error detection system that is evident across vari-
ous  stimulus and response modalities (Gehring et al., 1993;
van  Veen and Carter, 2002).

Consistent  with the view that anxiety may  be associ-
ated with hyperactive error monitoring (McDermott et al.,
2009;  Olvet and Hajcak, 2008), individuals with anxiety dis-
orders  are characterized by increased ERNs (Endrass et al.,
2008;  Gehring et al., 2000; Hajcak et al., 2007; Weinberg
et  al., 2010). Along similar lines, an increased ERN has been
reported in relation to high trait anxiety and high levels of
worry  (Hajcak et al., 2003; Olvet and Hajcak, 2009a), but
not  to increased state levels of anxiety (Moser et al., 2005).

Based  on multiple studies that utilize source localization
techniques (Dehaene et al., 1994; Mathalon et al., 2003; van
Veen  and Carter, 2002), as well as work that combines ERP
and  fMRI (Debener et al., 2005), it is likely that the ERN is
generated in the anterior cingulate cortex (ACC). Consis-
tent  with work on anxiety and the ERN, fMRI studies also
suggest increased error-related ACC activity among anx-
ious  individuals (Fitzgerald et al., 2005; Paulus et al., 2002;
Ursu  et al., 2003).

One  fMRI study found that adolescents with gener-
alized anxiety disorder showed greater activation in a
network  including the amygdala, ventral prefrontal cor-
tex,  and ACC in response to fearful faces (McClure et al.,
2007).  Similar to research findings in adults, some studies
have  reported increased ERNs among anxious children. The
ERN  is larger among children with obsessive compulsive
disorder (Hajcak et al., 2008), children with non-clinical
symptoms of obsessive-compulsive disorder (Santesso
et  al., 2006), and within a heterogeneous group of clini-
cally  anxious children (Ladouceur et al., 2006). Consistent
with the possibility that the ERN may  relate to develop-
mental processes of risk that emerge across development,
one study found that behavioral inhibition (BI) assessed
in  early childhood predicted a larger ERN in adolescence
(McDermott et al., 2009). Moreover, ERN moderated the
relationship between BI and the development of anxiety in
adolescence: disorders were most common among those
children who were high in BI and had a larger ERN. These
data  suggest that increased error-related brain activity
may  help delineate anxious versus non-anxious trajecto-
ries  across development. However, existing studies have
focused  on somewhat older children in their evaluation

of the ERN and its relationship with anxiety (i.e., partici-
pants are often early adolescents), and no study to date has
examined  the relationship between ERN and anxiety as a
function  of age.
 Neuroscience 2 (2012) 152– 161 153

Neurodevelopmental studies suggest that the ACC
matures into early adulthood (Cunningham et al., 2002)
and  that activation of the ACC increases over the course
of  development (Adleman et al., 2002; Van Bogaert et al.,
1998).  One neuroimaging study of 5–16 year old individu-
als  found a significant correlation between volume of the
right  ACC and performance on a go/no-go task (Casey et
al.,  1997a,b). This same study found a significant corre-
lation between age and volume of the right ACC, but not
size  of cerebrum. Consistent with these data, the ERN may
not  reach adult-like levels until the late teen years (Davies
et  al., 2004). Davies et al. (2004) found that the amplitude
of the ERN increased with age in a sample of 7–25 year-
olds, with a significant age by gender interaction, which
they  suggested might reflect associations between puber-
tal  onset and increases in the ERN. Another study found
that ERN amplitude related to performance measures on a
flankers  task in adults but not in adolescents, suggesting
that the relationship between ERN and behavioral mea-
sures  emerges developmentally (Ladouceur et al., 2007).
However, the ERN can be elicited among much younger
children: one study found a robust ERN in children as
young  as 5–7 years old (Torpey et al., 2009). In light of
maturational changes that impact both the ACC and ERN,
it  may be important to examine the developmental rela-
tionship between ERN and anxiety as children transition
from middle childhood to early adolescence—especially
because this period marks a transition into a higher-risk
period for anxiety and mood disorders (Costello et al.,
2005).

In  addition to the ERN, the error positivity (Pe) is another
component associated with response monitoring. The Pe
appears  within 200–500 ms  following an error response,
and appears to be independent of the ERN (Falkenstein
et al., 2000; Overbeek et al., 2005; Santesso et al., 2006).
There is evidence that the Pe is affected by awareness
of errors (Nieuwenhuis et al., 2001), and may  reflect a
P300-like orienting response to errors (Ridderinkhof et al.,
2009).  The Pe has not been consistently associated with
anxiety disorders in adults or children, however (Endrass
et  al., 2008; Hajcak et al., 2008; Ladouceur et al., 2006;
McDermott et al., 2009; Ruchsow et al., 2005). Addition-
ally, studies have suggested that the Pe is more invariant
across development than the ERN, with Pe amplitudes in
childhood  matching those of adults (Davies et al., 2004;
Wiersema et al., 2007).

In  the current study, ERPs were recorded while 55 chil-
dren  aged 8–13 performed an arrow version of the flankers
task  (Eriksen and Eriksen, 1974). Both children and their
parents reported on children’s anxiety so that the rela-
tionship between anxiety and the ERN and Pe could be
examined, as well as the impact of age on the associa-
tion between anxiety and ERP measures. Based on previous
work,  we predicted that the ERN would increase with age
in  this sample, and that the relationship between ERN and
anxiety  would be moderated by age, such that the corre-
lation between ERN and anxiety would be larger among

older children. We  did not expect the Pe to vary with age;
in  light of inconsistent findings on the Pe, we had no a priori
hypotheses regarding its relationship with anxiety, or the
moderating role of age on this association.
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. Method

.1. Participant recruitment and screening

Subsequent to approval by the Stony Brook University
nstitutional Review Board, participants were recruited via

 commercial mailing list targeting families with children
etween 8 and 13 years of age in Stony Brook and the
urrounding community. Letters, followed by phone calls,
ent  out to approximately 800 families from the mailing

ist.  A total of 70 participants (30 female) between the ages
f  8 and 13 participated in the study. Four participants
ere excluded from analysis due to poor quality record-

ngs. Additionally, participants who committed errors on
ore  than 25% of trials (i.e., 85 or more errors) and par-

icipants who committed fewer than 6 errors (Olvet and
ajcak,  2009b) were excluded from the final sample (11

ubjects excluded in total). The final sample consisted of
5  participants (24 female). Behavioral data for one partic-

pant  was lost as a result of experimenter error; therefore,
ehavioral results are based on 54 subjects (24 female).
ssent was obtained from child participants and informed
onsent was obtained from their parent prior to the exper-
ment.  Participants received $45.00 for their participation
n the study.

The  participants ranged from 8 to 13 years old and the
ean age of the final sample was 10.95 (SD = 1.48); 89.1%

f  the sample was Caucasian, 1.8% was African-American,
.8% was Asian, and 7.3% identified as Other.

.2. Self-report

Two versions of the Screen for Child Anxiety Related
motional Disorders (SCARED; Birmaher et al., 1997a,b)
ere administered: one to the participants (Child-

CARED), and one to the parent who accompanied the
hild  to the laboratory (Parent-SCARED). Both versions of
he  SCARED broadly assess symptoms of anxiety as they

anifest in children, including symptoms of panic, general
nxiety, separation anxiety, social phobia, and school pho-
ia  (Birmaher et al., 1997a,b). Each version consisted of a
8-item  scale on which the participant can answer between

 (‘not true or hardly ever true’) to 2 (‘true or often true’); 1
orresponded to ‘sometimes true’. The maximum score for
ach  version is 76. Both versions also included 5 subscale
cores: Panic/Somatic, General Anxiety, Separation Anxi-
ty,  Social Phobia, and School Phobia. Children filled out
uestionnaires either immediately before or after the EEG
ession;  parents filled out measures during their child’s EEG
ession.

.3.  Task and materials

An  arrow version of the flanker task (Eriksen and
riksen, 1974) was administered on a Pentium D class
omputer, using Presentation software (Neurobehavioral
ystems, Inc., Albany, CA, USA) to control the presenta-

ion and timing of all stimuli. Each stimulus was  displayed
n  a 19 in (48.3 cm)  monitor. On each trial, five horizon-
ally aligned arrowheads were presented. Half of all trials
ere  compatible (“< < < < <” or “> > > > >”) and half were
 Neuroscience 2 (2012) 152– 161

incompatible (“< < > < <” or “> > < > >”); the order of com-
patible and incompatible trials was random. Each set of
arrowheads occupied approximately 1.3◦ of visual angle
vertically and 9.2◦ horizontally. All stimuli were presented
for  200 ms  followed by an ITI that varied randomly from
2300  to 2800 ms.

1.4. Procedure

After a brief description of the experiment, EEG elec-
trodes were attached and the subject was given detailed
task instructions. All participants performed multiple tasks
during  the experiment. The order of the tasks was coun-
terbalanced across subjects and the results of other tasks
will  be reported elsewhere (see, e.g., Bress et al., in press).
Participants were seated at a viewing distance of approxi-
mately 24 in (61 cm)  and were instructed to press the right
mouse  button if the center arrow was  facing to the right and
to  press the left mouse button if the center arrow was facing
to  the left. Participants performed a practice block contain-
ing  30 trials during which they were instructed to be both
as  accurate and fast as possible. The actual task consisted of
11  blocks of 30 trials (330 trials total) with each block initi-
ated  by the participant. To encourage both fast and accurate
responding, participants received feedback based on their
performance at the end of each block. If performance was
75%  correct or lower, the message “Please try to be more
accurate” was  displayed; performance above 90% correct
was  followed by “Please try to respond faster”; otherwise,
the message “You’re doing a great job” was displayed.

1.5. Psychophysiological recording, data reduction and
analysis

Continuous EEG recordings were collected using an
elastic cap and the ActiveTwo BioSemi system (BioSemi,
Amsterdam, Netherlands). Thirty-four electrode sites were
used,  based on the 10/20 system, as well as two electrodes
on  the right and left mastoids. Electrooculogram (EOG) gen-
erated  from eye movements and eyeblinks was recorded
using four facial electrodes: horizontal eye movements
were measured via two  electrodes located approximately
1 cm outside the outer edge of the right and left eyes. Ver-
tical  eye movements and blinks were measured via two
electrodes placed approximately 1 cm above and below the
right  eye. The EEG signal was pre-amplified at the electrode
to  improve the signal-to-noise ratio and amplified with a
gain  of one by a BioSemi ActiveTwo system (BioSemi, Ams-
terdam).  The data were digitized at 24 bit resolution with
a  sampling rate of 1024 Hz using a low-pass fifth order
sinc  filter with a half-power cutoff of 204.8 Hz. Each active
electrode was measured online with respect to a common
mode sense (CMS) active electrode producing a monopolar
(non-differential) channel. Offline, all data were referenced
to  the average of the left and right mastoids, and band-
pass filtered between 0.1 and 30 Hz; eye-blink and ocular
corrections were conducted per Gratton et al. (1983).
A  semi-automatic procedure was  employed to detect
and reject artifacts. The criteria applied were a voltage
step of more than 50.0 �V between sample points, a volt-
age  difference of 300.0 �V within a trial, and a maximum
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Fz,  FCz, Cz, FC1, and FC2) where the error minus correct
difference was  maximal are also presented in Fig. 1 (top;
left).  Confirming the impression from Fig. 1, the ERN was
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voltage difference of less than .50 �V within 100 ms
intervals. These intervals were rejected from individual
channels in each trial. Visual inspection of the data was then
conducted to detect and reject any remaining artifacts.

The  EEG was segmented for each trial beginning 300 ms
before  response onset and continuing for 1300 ms  (i.e.,
1000  ms  following the response); a 200 ms  window from
−300  to −100 ms  before the response onset served as the
baseline. Correct and error trials were averaged separately.
For  each subject, the most negative peak in a time window
from  50 ms  prior to response onset to 100 ms  following the
response  was detected on error trials; the ERN was then
quantified as the average activity in the 50 ms  around this
peak  (i.e., 25 ms  on either side of the peak) on error trials at
a  pooling of fronto-central sites (Fz, FCz, Cz, FC1, and FC2)
where  error-related brain activity was maximal. In addi-
tion,  the correct response negativity (CRN) was evaluated
in  the same time window and pooling of electrodes on cor-
rect  trials. Finally, the error positivity (Pe) was evaluated on
error  trials as the average activity at a pooling of Cz, CP1,
CP2  and Pz from 200 to 400 ms  following response onset. A
comparable  time window was also evaluated at the same
sites  on correct trials.

Behavioral  measures included both the number of error
trials  for each subject, as well as accuracy expressed as a
percentage of all valid trials. Average reaction times (RTs)
on  error and correct trials were also calculated separately,
as  were RTs on correct trials that followed correct and
errors trials to evaluate post-error RT slowing. Trials were
removed from all analyses if reaction times were faster than
200  ms  or slower than 1300 ms.

In  examinations of the full sample, statistical analyses
were conducted using SPSS (Version 17.0) General Lin-
ear  Model software, with Greenhouse–Geisser correction
applied to p values associated with multiple-df, repeated-
measures comparisons when necessitated by violation of
the  assumption of sphericity.

The Pearson correlation coefficient (r) was also used
to  examine associations between anxiety, behavioral and
ERP  measures. Because parent- and child-reported anxiety
were  only moderately related, r(54) = .35, p < .01, behav-
ioral and ERP measures were related to both child- and
parent-reported anxiety separately. Hierarchical regres-
sion  analyses were used to examine interaction effects.

2.  Results

2.1. Self-report

Overall, the mean score for the Child-SCARED was 18.00,
SD  = 10.17. The mean score for the Parent-SCARED was
10.00,  SD = 7.14. The scores on each scale did not deviate
from a normal distribution (Parent-SCARED/Child-SCARED
kurtosis and skewness were .31/2.10 and .79/.89, respec-

tively). In the Child-SCARED, the subscales were highly
correlated with one another (r’s ranged from .55 to .82,
all  significant at p < .001).1 In the Parent-SCARED, the

1 Means and standard deviations for the Child-SCARED subscales:
Somatic Panic, M = 1.29, SD = .27, General Anxiety, M = 1.49, SD = .40,
 Neuroscience 2 (2012) 152– 161 155

subscales were also highly correlated (r’s ranged from .49
to  .78, all significant at p < .001).2 Additionally, children
tended to skip more questions than their parents, t(1,
54)  = 2.36, p < .05.

2.2. Behavioral data

Overall,  participants committed an average of 40.28
(SD = 18.46) errors, and were correct on 86.17% (SD = 7.29)
of  trials. Age was  unrelated to accuracy, r(53) = −.17,
p  = .21. Consistent with previous work, participants were
faster  on error, M = 371 ms,  SD = 66, than correct tri-
als, M = 517 ms,  SD = 105; F(1,53) = 148.60, p < .001; �2

p =
.74.  Older children were characterized by faster reac-
tion  times on both error, r(53) = −.34, p < .05 and correct,
r(53) = −.56, p < .01, trials. Participants were slower to gen-
erate  a correct response on trials that occurred after an
error,  M = 525 ms,  SD = 107, than after a correct response,
M = 479 ms,  SD = 109; F(1,53) = 36.74, p < .001; �2

p = .41;
moreover, the degree of post-error slowing (i.e., post-error
RT  minus post-correct RT) decreased with age, r(53) = −.30,
p  < .03, and increased as a function of anxiety symptoms
on the Child-SCARED, r(53) = .36, p < .01. Accuracy was not
related  to Parent-SCARED or Child-SCARED, r(53) = −.10,
p  = .47; r(53) = −.02, p = .87, respectively. Despite post-
error increases in RT, accuracy was comparable after
correct, M = 87.67%, SD = 6.32, and incorrect responses,
M = 86.45%, SD = 10.87, t(1,53) = .907, p > .40. Parent’s report
of  child anxiety was  moderately correlated with post-error
accuracy, such that increasing anxiety predicted worse
post-error accuracy, r(53) = .26, p < .06.

Correlational analyses were conducted to examine pos-
sible  speed-accuracy trade-off effects. Partial correlations
(controlling for age) were conducted between the per-
centage of errors and incorrect RTs, r(53) = .11, p < .43, and
correct  RT, r(53) = .466, p < .001. These results indicate that
faster  RTs were associated with reduced accuracy.

Overall then, errors were faster than correct trials, and
there was evidence for post-error RT slowing, although
accuracy was not improved following errors. Increasing age
was  associated with faster RTs and reduced post-error RT
slowing.  Moreover, post-error RT slowing was larger and
post-error mistakes were more frequent among more anx-
ious  children.

2.3.  Error-related brain activity

Fig. 1 (top; right) presents a topographic map  depicting
voltage differences (in �V) across the scalp for error minus
correct responses in the time window of the ERN. Grand
average response-locked ERPs at the pooling of sites (i.e.,
Separation Anxiety, M = 1.55, SD = .39, Social Phobia, M = 1.95, SD = .54,
School Phobia, M = 1.30, SD = .34.

2 Means and standard deviations for the Parent-SCARED subscales:
Somatic Panic, M = 1.10, SD = .17, General Anxiety, M = 1.40, SD = .33, Sep-
aration Anxiety, M = 1.25, SD = .27, Social Phobia, M = 1.61, SD = .53, School
Phobia, M = 1.17, SD = .27.
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larger  (i.e., more negative) ERN, r = −.35,  ̌ = −.53, t = 2.69,
p  < .01, whereas in the younger children (i.e., one standard
deviation below the mean age; 9.47 years) the relationship
ig. 1. Response-locked ERP waveforms at Fz, FCz, Cz, FC1, and FC2 (top le
t  Cz, CP1, CP2 and Pz (bottom left), where the Pe is maximal. To the righ
esponses  in the time range of the ERN (0–50 ms;  top) and the Pe (200–40

ignificantly more negative, M = −0.90 �V, SD = 5.69, than
he  CRN, M = 2.81 �V, SD = 4.78; F(1,54) = 25.16, p < .001;
2
p = 32.

A  similar topographic map  used to depict voltage differ-
nce  (in �V) in the time window of the Pe is presented in
ig.  1 (bottom; right), along with grand average response-
ocked ERPs at the pooling of sites (i.e., Cz, CP1, CP2 and
z)  where the difference between error and correct trials
as  maximal in the time range of the Pe (bottom; left).
s  suggested by Fig. 1, the Pe was significantly more pos-

tive  following error trials, M = 14.18 �V, SD = 8.18, than
ollowing correct trials, M = 8.81, SD = 5.37; F(1,54) = 13.32,

 < .001; �2
p = 21. Pe and ERN were uncorrelated (p > .65).

.4. Correlations between ERPs and anxiety, and the
oderating effect of age

In  the full sample, none of the measures of anxiety
including the subscale scores) correlated with any ERP

easures. Age was unrelated to the CRN and activity in
he  time-range of the Pe (on both error and correct trials);
owever, older children were characterized by a marginally
arger (i.e., more negative) ERN, r(53) = −.24, p < .10.
A  series of hierarchical regression analyses were next

onducted according to the procedures outlined by Aiken
nd  West (1991) to examine the potential moderating
re the ERN was  maximal. Below this are response-locked ERP waveforms
pographic maps depicting differences (in �V) between error and correct
ottom).

effect of age on the relationship between anxiety and the
ERN.  Both child and parental report of child anxiety were
included in these analyses. Age and both measures of anx-
iety  were included in the model as independent variables,
as  were the two cross-products of age and each measure
of  anxiety (both centered). As indicated in Table 1, though
child  report of anxiety was not significantly associated
with the magnitude of the ERN, age did have a moder-
ating effect on the relationship between Parent-SCARED
and the ERN.3 The interaction between age and Parent-
SCARED was  significant, as indicated by the product term
having  a significant unique effect, t(49) = 2.07, p < .05, effect
size  (partial r) = .28. Fig. 2 (top) illustrates this pattern by
showing  the regression lines (based on the overall regres-
sion  equation) for Parent-SCARED predicting ERN at one SD
above  and below the mean age of the sample. Among older
children  (i.e., one standard deviation above the mean age;
12.43  years), greater parental report of anxiety predicted a
3 The same analyses were run using the factors of the Parent and Child
SCARED. Of the factors, it appears that age has a moderating effect on the
relationship between Factor 5 (School Phobia) and both ERN and Pe.
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Table 1
Results of hierarchical multiple regression examining the moderating effect of age on the relationship between child anxiety and the magnitude of the ERN.

Variables entered ERN Pe on error trials

 ̌ t  ̌ t

Step one
Child’s age −.25 1.79† .22 1.57
Child self-report of anxiety −.05 .31 −.06 .39
Parental report of child anxiety .04 .26 .08 .55

Step  two
Child’s age −.29 2.10* .17 1.27
Child  self-report of anxiety −.03 .21 .10 .68
Parental report of child anxiety −.01 .04 −.10 .71
Age  × Child self-report of anxiety .03 .19 .14 .99
Age  × Parental report of child anxiety −.30 2.07* −.31 2.13*

Note: for the ERN analyses, R2 for step 1 = .06; R2 for step 2 = .14; for the Pe analyses, R2 for step 1 = .22; R2 for step 2 = .36.
* p < .05.

** p < .01.
*** p < .001.
† p < .10.

Fig. 2. The results of moderation analyses for the ERN (top) and Pe
(bottom). Among older children a larger (i.e., more negative) ERN was
associated with greater parental report of child anxiety (top); the opposite

is  true for younger children. A smaller (i.e., less positive) Pe was associated
with greater parental report of child anxiety (bottom); again, this effect is
reversed in younger children.
was positive and did not reach significance, r = .23,  ̌ = .35,
t  = 1.67, p = .09.4 At the mean age (10.95 years), there was

4 The same pattern of results was found when congruent and incongru-
ent trials were analyzed separately, though the Ns were reduced to 37 and
51,  respectively, and the effects failed to reach significance.
no significant relationship between the magnitude of the
ERN  and parental report of anxiety r = −.06,  ̌ = −.09, t = .44,
p  > .25. Analyses conducted with CRN activity did not reveal
any  significant relationships (all p’s > .4).

For presentation purposes, a median split was  con-
ducted on the Parent-SCARED scores to create high- and
low-anxiety groups among older (11–13 years old) and
younger (8–10 years old) children. Fig. 3 (right) presents
topographic maps depicting voltage differences (in �V)
across  the scalp for error minus correct responses in the
time  window of the ERN in each of these four groups.
In addition, grand average response-locked ERPs for each
group  are also presented in Fig. 3 (left).

The same analyses were repeated with the Pe on error
trials; as noted in Table 1, the relationship between Parent-
SCARED and the Pe also appeared to be moderated by the
age  of the child, such that a smaller Pe was  associated with
greater  anxiety, but only among older children, r = −.45,
ˇ  = −.65, t = 3.29, p < .01. There was not a significant effect
of  anxiety on the Pe for younger children r = .14,  ̌ = .27,
t  = 1.00, p > .10; see Fig. 2, bottom. Similarly, at the mean
age,  there was not a significant relationship between the
magnitude of the Pe and parental report of anxiety r = −.06,
ˇ  = −.19, t = 1.15, p > .10.

3.  Discussion

The results of the current study suggest that the rela-
tionship between the ERN and anxiety is moderated by age:
only  for older children in the current study, a larger (i.e.,
more  negative) ERN was related to increased parent reports
of  child anxiety. Although the effect was not as robust in
younger children, the observed relationship was  opposite
in  direction: increasing parent-report of child anxiety was
related  to smaller (i.e., less negative) ERN.

Across the entire sample, ERN tended to be larger among
older children at a trend level. These findings are broadly

consistent with previous findings that the ERN fluctu-
ates throughout development and begins to substantially
increase around age 12 (Davies et al., 2004). Event-related
fMRI data also suggests that the ACC does not have a



158 A. Meyer et al. / Developmental Cognitive Neuroscience 2 (2012) 152– 161

F in anxie
p raphic m
t

m
e
b
r
a

s
o
r
t
m
C
s
d
p
i
p
m
T
a
p
b
t

ig. 3. Response-locked ERP waveforms for participants high and low 

articipants separately. Response-locked ERP waveforms (left) and topog
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ature activation pattern until late adolescence (Crone
t  al., 2008). Participants in the current study may  have
een  too young overall to detect stronger robust age-
elated changes in the ERN that have been reported around
ge  13 (Segalowitz et al., 2010).

Age was robustly related to RT measures in the current
tudy: both RT and post-error RT slowing decreased among
lder  children. Age was unrelated to performance accu-
acy,  suggesting that as children got older, they were faster
o  respond and slowed less after errors but did not com-

it  more errors (i.e., they performed better on the task).
hild  anxiety was related to both increased post-error RT
lowing,  and worse post-error accuracy. Thus, anxious chil-
ren  tended to slow down more following errors, but also
erform  worse after making a mistake. Post-error slow-

ng  is thought to be a behavioral adjustment to improve
erformance (Rabbitt, 1966) that results from the recruit-
ent  of cognitive control processes (Botvinick et al., 2001).

he  fact that anxious children slowed more after errors but

lso  performed worse suggests that efficiency of ACC and
refrontal network functioning following an error might
e  compromised among anxious children. This is consis-
ent  with the assertion of attentional control theory that
ty based on parental report, among older (top) and younger (bottom)
aps of activity in the time-range of the ERN (0–50 ms; right) for each of

anxiety  is associated with decreased processing efficiency,
especially under stress (Eysenck et al., 2007).

In the current study, the ERN related to anxiety among
11–13 year olds—results that are consistent with exist-
ing data (Hajcak et al., 2008; Ladouceur et al., 2006;
Santesso et al., 2006) which have generally assessed some-
what  older children (e.g., mean ages of 13.3, 10.2, 11.42,
respectively). Because this relationship was not found
among younger children, our data suggest that the rela-
tionship between increased error-related brain activity
and  anxiety may  emerge in early adolescence. It has pre-
viously been suggested that pediatric anxiety disorders
are related to altered maturational patterns in ACC cir-
cuitry  (Ladouceur et al., 2006) and greater ACC activation
in  response to fearful faces (McClure et al., 2007). Given
that  previous evidence indicates that the ERN does not
reach  adult-like levels until late adolescence (16–18 years
old),  it may  be that there is a subset of anxious younger
adolescents who begin to display adult-like ERNs and

excessive error-related ACC activity. Excessive ACC activ-
ity  may  only begin to emerge as the ACC establishes
some baseline of functional connectivity and adult-like
structure.
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It is also important to note that among younger chil-
dren (i.e., 8–10 year olds), we found a weaker relationship
between the magnitude of the ERN and anxiety that was
in  the opposite direction, such that higher child anxiety
was related to a smaller (less negative) ERN. Collectively,
these data indicate that the nature of the relationship
between ERN and anxiety may  fundamentally change
across development—an unexpected finding that certainly
warrants further study. One possible explanation for the
changing relationship between anxiety and the ERN may
be  the differential development of the rostral and dor-
sal  ACC. Specifically, one study found that the rostral ACC
activity  during response monitoring varied as a function
of  age, whereas dorsal ACC activation was only evident
among adults (Velanova et al., 2008). Thus, the ratio of dor-
sal  to rostral ACC activity during response monitoring may
increase  across development. Considering that some stud-
ies  have related anxiety to hypoactive rostral ACC activity in
particular  (Adleman et al., 2002; Cunningham et al., 2002),
it  is possible then that anxiety is related to hypoactive
rostral ACC activity in both adults and children—and to
increased dorsal ACC activity with increasing developmen-
tal changes. Future studies examining the relationship of
childhood  and adult anxiety to rostral and dorsal ACC activ-
ity  in response to errors are needed to further investigate
this possibility.

Alternatively, it is possible that the observed devel-
opmental change in the relationship between ERN and
anxiety could relate to the changing phenomenology of
anxiety  across development. In particular, it is possible
that younger children are more focused on external threat,
whereas adolescents begin to monitor more for internal
signals of danger. Work by Crozier suggests that chil-
dren around age 5 display fearful shyness that expands
to  include self-conscious shyness by age 10 (Crozier and
Burnham, 1990). In line with this, worry about behav-
ioral competence and social evaluation increases with age
(Spence  et al., 2001; Vasey and Crnic, 1994). Given the
strong  relationship between the ERN and generalized anxi-
ety  disorder (Weinberg et al., 2010) and pathological worry
(Hajcak  et al., 2003), it is possible that ERN relates to
more ‘cognitive’ forms of anxiety such as anxious appre-
hension, which may  develop later than anxious arousal, or
fear  (Nitschke et al., 2001). Along these lines then, future
research might examine the relationship between dimen-
sions  of anxiety and the ERN in a developmental context. It
is  possible that anxious arousal (i.e., fear) in younger chil-
dren  is related to smaller ERNs and anxious apprehension
(i.e., worry) in older children is related to larger ERNs.

It  is important to note that task difficulty could have
played a role in the age group differences we observed in
the  ERN. A previous study found that ERN amplitudes were
comparable between a group of adolescents and adults dur-
ing  a simple task, but adults showed larger ERNs during
a  more complex task (Hogan et al., 2005). Future studies
might relate the ERN to developmental changes utilizing
multiple tasks that vary in difficulty.
Consistent with previous findings (Davies et al., 2004),
we  found no relationship between Pe amplitude and age.
However, we did find that that age moderated the rela-
tionship between Pe and parent report of anxiety, such that
 Neuroscience 2 (2012) 152– 161 159

among  older children, higher levels of parent reported anx-
iety  were related to a smaller Pe. This fits with evidence
in some studies that adults with high negative affect or
anxiety  have decreased Pe amplitudes, possibly due to do
reduced  error awareness (Gehring et al., 2000; Hajcak et al.,
2004;  Hajcak and Simons, 2002). Thus, we found that in
older  children, the relationship between both Pe and ERN
with  anxiety was similar to that of adults. This is a novel
finding in children and warrants further investigation.

It should also be noted that associations between anx-
iety  and ERN/Pe in both the younger children and older
children were found only when using parent report of anx-
iety.  No significant associations were found using child
reports. One possible reason for this discrepancy may  be
that  children tended to skip more questions on the SCARED
than  their parents. Future work using both self-report
and interview-based measures over multiple assessment
points should be able to clarify whether an increased
ERN/Pe is more related to parent or child reports of chil-
dren’s anxiety.

One  other limitation that merits discussion is the pos-
sibility that other psychological conditions could have
influenced the results. Specifically, ADHD has been impli-
cated  in impaired error monitoring (Crone et al., 2008;
Segalowitz and Dywan, 2009). It may  be useful in future
studies to examine the relationship between ERN/Pe and
anxiety  in children who  have also been evaluated for other
psychological conditions, and to utilize other measures of
anxiety.

Further  work in larger samples is necessary to better
understand the developmental trajectory of the rela-
tion  between ERN/Pe and anxiety. In particular, it will
be  important to track the development of the ERN/Pe
and its relationship to anxiety within individuals across
development, using longitudinal experimental designs. An
intriguing  possibility is that anxious young children with
smaller  ERNs may  develop into anxious adolescents with
larger  ERNs. Insofar as the ERN has been proposed as a
viable  endophenotype for anxiety disorders (Olvet and
Hajcak,  2008), the developmental relationship between
anxiety and ERN will be important to characterize using
longitudinal study designs.
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