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The ERN is a negative deflection in the event-related potential that peaks approximately 50 ms
after the commission of an error. The ERN is thought to reflect early error-processing activity of
the anterior cingulate cortex (ACC). First, we review current functional, neurobiological, and
developmental data on the ERN. Next, the ERN is discussed in terms of three psychiatric
disorders characterized by abnormal response monitoring: anxiety disorders, depression, and
substance abuse. These data indicate that increased and decreased error-related brain activity is
associated with the internalizing and externalizing dimensions of psychopathology,
respectively. Recent data further suggest that abnormal error-processing indexed by the ERN
indexes trait- but not state-related symptoms, especially related to anxiety. Overall, these data
point to utility of ERN in studying risk for psychiatric disorders, and are discussed in terms of
the endophenotype construct.
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Research has begun to identify risk factors for psychiatric disorders. For example, having a parent with the disorder is a
significant risk factor for anxiety disorders (Beidel & Turner, 1997), depression (Downey & Coyne, 1990), and substance abuse
(Hartman, Lessem, Hopfer, Crowley, & Stallings, 2006). Personality factors are also a strong predictor for developing psychiatric
disorders. For example, individuals reporting high levels of negative affect and the related personality trait of neuroticism report
more anxiety and depressive symptoms (Jylha & Isometsa, 2006) and are commonly diagnosed with anxiety disorders (Hettema,
Prescott, & Kendler, 2004), and major depressive disorder (Brown, Chorpita, & Barlow, 1998; Schmitz, Kugler, & Rollnik, 2003). In
contrast, novelty seeking is a personality trait that is characterized by impulsivity and sensation seeking, and is a significant
predictor for developing substance use disorders (Sher, Bartholow, & Wood, 2000).

Highheritability rates of thesedisorders suggest that genetics playan important role in their etiology (Hicks, Krueger, Iacono,McGue,&
Patrick, 2004; Kendler, Gardner, Gatz, & Pedersen, 2007; Middeldorp, Cath, Van Dyck, & Boomsma, 2005). However, isolating genetic
causes of these potentially heterogeneous and complex diseases has proved to be difficult (Chakravarti & Little, 2003; Lewis, 2002).
Recently, there is increasing focus on identifying neural and information-processing abnormalities that may place individuals at risk for
developing psychopathology. Oneway to do this is by studying endophenotypes, which are unobservable characteristics thatmediate the
relationship between genes and a given behavioral phenotype (Gottesman & Gould, 2003). Insofar as endophenotypes are less complex
and heterogeneous than the associated disorder, endophenotypes might be determined by fewer genes and be more amenable to study.

The present paperwill focus on neural activity related to actionmonitoring that ismeasuredwith event-related potentials (ERPs)— in
particular, brain activity that indexes the on-going monitoring of correct and incorrect behavior. This review will concentrate on error-
related negativity (ERN), focusing on its neural correlates and functional significance. The ERN will then be discussed in relation to
psychiatric disorders and relatedpersonality traits. Thesedata suggest that increasedactionmonitoring indexedby theERNmight serve as
aputative risk factor for anxietyanddepression,whereas reducedERNsmight relatemore to substance abusedisorders. Finally, thesedata
are discussed in terms of the endophenotype construct, and future directions for relevant research are discussed.

1. Response monitoring

1.1. Response monitoring tasks

The present paper focuses on ERP data recorded during a number of different speeded response tasks, includingmodified versions
of the Erickson Flankers task, the Simon task, color Stroop task, and the Go/No-Go task. In the arrows version of the Erikson Flankers
task, participants respond to the direction of a central arrowheadwhich is flanked by either compatible (e.g., b b b b b) or incompatible
(e.g., b b N b b) arrowheads (Eriksen & Eriksen, 1974). Similarly, in the Simon task, participants respond to a red circle with their left
index finger and to a blue circlewith their right index finger (Simon,1969). Stimuli are presented either to the right or to the left of the
center fixation cross, leading to congruent (e.g., red circle on the left side) or incongruent (e.g., red circle on the right side) trials. In the
color Stroop task, names of colors are presented on a screen and participants are asked to respond to the color of the word. On
congruent trials, the color of the target wordmatches theword (i.e., theword “red” is presented in red font), on incongruent trials, the
color of the targetworddoesnotmatch theword (i.e., theword “red”presented in green font); onneutral trials, theworddoes notmap
directly to either response (i.e., theword “blue” presented in red font). Finally, the Go/No-Go task requires participants to respond to a
target (i.e., Go stimulus) and withhold their response to a non-target distracter (i.e., No-Go stimulus).

Participants typically perform between 500 and 1500 trials in these tasks in relatively rapid succession. In all of these tasks, errors are
relatively rare and are characterized by fast reaction times compared to correct responses (Rabbitt,1966). This suggests that errors are due
to impulsive responding, prior to complete processing of the stimulus (Rabbitt & Vyas,1981). Interestingly, reaction times on correct trials
after errors are typically slower than the average reaction timeoncorrect trials. It is thought that suchpost-error slowingoccurs inorder to
increase the likelihood of a correct response on the subsequent trial (Hajcak, McDonald, & Simons, 2003b; Rabbitt, 1981).

1.2. Error-related negativity and related components

Whenparticipantsmake errors in these speeded response tasks, an ERP component, the error-related negativity (ERN)1, presents as a
negative deflection approximately 50–100 ms following the erroneous response (Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991;
Gehring, Goss, Coles, Meyer, & Donchin,1993). Typical response-locked ERPs for error and correct trials are presented in Fig. 1A. The ERN
has been observed across tasks that employ a variety of stimulus and response modalities (Bernstein, Scheffers, & Coles, 1995; Holroyd,
Dien, & Coles, 1998; Van't Ent & Apkarian, 1999) and task difficulty (Band & Kok, 2000; Mathalon et al., 2003; Mathewson, Dywan, &
Segalowitz, 2005;Moser, Hajcak, & Simons, 2005; Themanson, Hillman, & Curtin, 2006). The ERN is typicallymeasured atmidline frontal
or central sites where the ERN is largest (i.e., FCz); Fig. 1B presents the typical scalp distribution of the ERN.2 It is hypothesized that the
1 The focus of this review is the response related ERN, however, a similar component is observed following negative feedback (feedback ERN; Miltner, Braun, &
Coles, 1997). Although this feedback-related component is similar to what is observed after a response error, there are significant differences between the two
which have led some researchers to suggest that they are not the same component (Gehring & Willoughby, 2004; Hajcak, Moser, Holroyd, & Simons, 2006). Thus
this review will focus the psychophysiological response to errors or slips in fast reaction time tasks.

2 Following the ERN, another ERP component occurs on error trials: the error positivity (Pe). The Pe follows the ERN as a positive deflection 200–400 ms after
the commission of an error (Fig. 1A; Falkenstein, Hoormann, Hohnsbein, & Kleinsorge, 2003; Nieuwenhuis et al., 2001; Overbeek, Nieuwenhuis, & Ridderinkhof
2005) and has a more posterior midline scalp distribution than the ERN (Fig. 1C; Falkenstein et al., 2000). There are several theories as to what the Pe represents
but studies have not systematically evaluated the Pe, so it is difficult to identify its role in error processing (Overbeek et al., 2005). Therefore, this review will only
focus on the ERN and will not discuss Pe findings.
,

,
,



Fig. 1. The response locked ERPs for error and correct trials at FCz, where the ERNwas maximal (A). The response onset occurred at 0 ms and negative is plotted up
Scalp topography of error-related brain activity from 0 to 100 ms post-response (B). Scalp topography of error positivity from 200 to 400 ms post-response (C)
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anterior cingulate cortex (ACC) is the generator of the ERN as evidenced by studies using source localization (Dehaene, Posner, & Tucker,
1994; Holroyd et al.,1998; van Veen& Carter, 2002), magnetoencephalography (Miltner et al., 2003), and intracerebral recording (Brazdil,
Roman, Daniel, & Rektor, 2005). Additional confirmation of the relationship between the ERN and the ACC stems from human lesions
studies showing that patients with ACC lesions have diminished ERNs (Stemmer, Segalowitz, Witzke, & Schonle, 2004) and from single-
unit studies that show increased errorpotentials in the anterior cingulate cortex inmonkeys (Gemba, Sasaki, &Brooks,1986; Ito, Stuphorn,
Brown, & Schall, 2003).

Interestingly, a small ERN-like component is sometimes evident on correct response trials (Falkenstein, Hoormann, Christ, &
Hohnsbein, 2000; Ford, 1999; Gehring & Knight, 2000; Scheffers & Coles, 2000; Vidal, Hasbroucq, Grapperon, & Bonnet, 2000).
Because of its similarity to the ERN, this component has been referred to as the correct response negativity (CRN; Ford, 1999).
Authors have suggested that CRN reflects a response comparison process (Falkenstein et al., 2000; Vidal et al., 2000), an emotional
reaction (Luu, Collins, & Tucker, 2000), uncertainty of a correct response (Coles, Scheffers, & Holroyd, 2001; Pailing, Segalowitz,
Dywan, & Davies, 2002), or coactivation of correct and incorrect responses (Luu et al., 2000; Scheffers, Coles, Bernstein, Gehring, &
Donchin, 1996; Vidal et al., 2000).

Studies have consistently found that the ERN amplitude is larger when subjects make fewer errors (Amodio, Jost, Master, & Yee,
2007; Amodio, Master, Yee, & Taylor, 2008; Gehring et al., 1993; Hajcak et al., 2003b). Infrequent errors might make error
commission especially significant, thus altering the amplitude of error signaling. Differences in subjects' performance may thus
pose a confound when comparing ERP across groups with different error rates and reaction times (Hajcak, Vidal, & Simons, 2004;
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Yeung, 2004). That is, if a group of participants has larger ERNs than a control group, and commit fewer errors than the control
group, it is possible that the between-group behavioral differencesmight account for variation in the ERN. However it is possible to
control subjects' performance by providing feedback throughout the task (e.g., Hajcak and Foti, 2008) or by only comparing
subjects who are matched on performance (e.g., Tsai, Young, Hsieh, & Lee, 2005).

Trials with large ERN amplitudes have also been associated with increased post-error slowing (Debener et al., 2005; Gehring
et al., 1993). However, not all studies have replicated this pattern of results (Gehring & Fencsik, 2001; Scheffers, Humphrey, Stanny,
Kramer, & Coles, 1999). Interestingly, studies show that it is possible for subjects to make errors that they are unaware of — and
these unaware errors are associated with normal ERNs but reduced post-error slowing (Endrass, Reuter, & Kathmann, 2007;
Nieuwenhuis, Ridderinkhof, Blom, Band, & Kok, 2001). Therefore, post-error slowing appears to depend on error awareness,
whereas the ERN does not.

2. Functional significance of the ERN

Several theories and computational models have been developed regarding the functional significance of the ERN. Some
suggest that the ERN reflects the error-detection process (e.g., Falkenstein et al., 1991, 2000; Nieuwenhuis et al., 2001; Scheffers
et al., 1996), an error signal at the remedial action system (e.g., Holroyd & Coles, 2002), the conflict-detection process (e.g., Yeung,
Cohen, & Botvinick, 2004), or a more emotionally- or motivationally-relevant response to errors (Bush, Luu, & Posner, 2000;
Gehring & Willoughby, 2002; Pailing et al., 2002).

2.1. Mismatch theory

According to the early mismatch theory, the ERN represents the detection of a mismatch between the representations of the
actual and intended response (Bernstein et al., 1995; Coles et al., 2001; Falkenstein et al., 1991). Thus, ERN amplitude should be
directly related to the degree of mismatch between the correct and erroneous response. Indeed, studies confirm that subjects have
larger ERNswhen the error response and the correct response aremore dissimilar (Bernstein et al., 1995; Falkenstein, Hohnsbein, &
Hoormann,1995; Scheffers et al., 1996). This mismatch should also be larger when subjects are more certain of their errors. In fact,
studies have shown that the ERN amplitude is increased when subjects are sure that they made an error, regardless of whether or
not they actually make a mistake (Scheffers & Coles, 2000).

2.2. Reinforcement and learning-based theories

One of the more prominent computational models, based in part on the mismatch theory, is the reinforcement learning theory
of the ERN (RL-ERN; Holroyd & Coles, 2002). According to the RL-ERN, the basal ganglia monitor information from both the
environment (external) and self-generated actions (internal), and evaluate on-going events based on learned expectations
(Holroyd & Coles, 2002). The RL-ERN is rooted in non-human animal work indicating that the basal ganglia induce an increase or
decrease in phasic midbrain dopamine (DA) activity, when events are better or worse than expected, respectively (for review see
Barto, 1995; Houk, Adams, & Barto, 1995; Schultz, 2002). The RL-ERN theory proposes that the ERN is the result of disinhibition of
the ACC by DA neurons signaling events as worse than anticipated. From this perspective, error signals are important for learning
because they are used to predict future rewards and non-rewards and to modify ongoing behavior (Barto, 1995; Montague, Dayan,
& Sejnowski, 1996; Schultz, 2002).

Consistent with the RL-ERN's hypothesized role of DA in the generation of the ERN, administration of the DA agonist D-
amphetamine leads to an increase in the ERN amplitude (de Bruijn, Hulstijn, Verkes, Ruigt, & Sabbe, 2004), whereas the
administration of the DA antagonist haloperidol leads to a decrease in the ERN amplitude (de Bruijn, Sabbe, Hulstijn, Ruigt, &
Verkes, 2006; Zirnheld et al., 2004). Demonstrating the specificity of DA neurotransmitter levels on the ERN, one study found that
the selective serotonin reuptake inhibitor paroxetine had no effect on ERN amplitude (de Bruijn et al., 2006).

It is likely that changes in baseline DA levels are important for understanding the effects of dopaminergic agents on the ERN.
This has been proposed in a new computational model, which builds upon the RL-ERN model, and states that basal DA levels can
have a significant effect on reinforcement learning due to possible range restrictions on phasic DA bursts (Frank, 2005). For
example, individuals with Parkinson's disease who are being treated with DA agonists may have elevated tonic DA levels that
prevent effective phasic dips, which could hinder negative reinforcement learning. Since these phasic dips characterize the ERN
signal, the ERN amplitudewould be diminished in Parkinson's disease patients, which is consistent with the literature (Falkenstein
et al., 2001; Ito & Kitagawa, 2006; Stemmer, Segalowitz, Dywan, Panisset, & Melmed, 2007).

2.3. Conflict monitoring theory

Both the mismatch theory and the RL-ERN theory provide significant insight into the function of the ERN; however, in the
context of these theories, it is unclear why an error occurs in the first place, especially if the correct representation is present at the
time of the error (cf. Yeung et al., 2004). Another computational model, the conflict monitoring theory, addresses this concern by
focusing on conflict detection rather than error detection, per se. The conflict monitoring theory is based on the idea that the role of
the ACC is to monitor conflict during response selection and that errors are simply a specific example of response conflict that
occurs between an erroneous and error-correcting response (Yeung et al., 2004). That is, both error and correct response
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representations are dynamically activated as a result of continued stimulus processing; on error trials, an error is therefore
followed by an error-correcting response, which elicits conflict between the error and the error-correcting correct response
(Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988; Rabbitt, 1981; Yeung et al., 2004). From this point of view, errors are simply
trials on which response conflict crosses some threshold. The conflict monitoring theory identifies the ACC as the neural seat of
conflict monitoring. In support of this, neuroimaging studies show that the ACC is active not only following errors, but also on
correct trials that are incongruent and elicited high response conflict (Bench et al., 1993; Botvinick, Nystrom, Fissell, Carter, &
Cohen,1999; Carter et al., 1998; Carter et al., 2000;MacDonald, Cohen, Stenger, & Carter, 2000; Pardo, Pardo, Janer, & Raichle,1990).

A number of investigators have also compared the ERN to a negative deflection in the stimulus-locked ERP: the N2 peaks
between 200 and 400 ms after stimulus presentation, and thus generally occurs prior to the execution of a response. It is most
pronounced on trials with high response conflict, and is evident in the incongruent minus congruent stimulus-locked difference
waveform on correct trials. For example, in the Flankers task, high response conflict occurs when the flanking arrows are in the
opposite direction as the center arrow (b b N b b). The N2 is thought to reflect the coactivation of the correct and incorrect response
on correct trials (Falkenstein, Hoormann, & Hohnsbein,1999; Yeung et al., 2004). Some source localization studies show that the N2
and the ERN have similar scalp topographies and a common neural source (caudal ACC), but they occur at different times relative to
the response. That is, N2 occurs prior to correct responses and the ERN occurs following erroneous responses (Carter et al., 1998; van
Veen & Carter, 2002; van Veen, Cohen, Botvinick, Stenger, & Carter, 2001; van Veen, Holroyd, Cohen, Stenger, & Carter, 2004; Yeung
et al., 2004). Collectively, these results raise the possibility that ERN-like activity might reflect both error-detection and the more
general detection of response conflict on correct trials.

The original version of the conflict monitoring theory does not account for the CRN. In the conflict monitoring theory, increased
conflict should occur prior to the response on correct trials but after the response on error trials (Yeung et al., 2004). However, it has
recently been suggested that conflict might occur at multiple levels. van Veen and Carter (2005) studied both stimulus and
response conflict while participants performed a Stroop task. They found that although the ACC was active during both forms of
conflict, specific regions of the ACC differed, which suggests that different forms of conflict processing occur in parallel. Therefore,
CRN might be related to conflict at the response level. In fact, work by Bartholow and colleagues indicates that incompatible trials
yield a larger CRN amplitude than compatible trials (Bartholow et al., 2005). Thus, the relatively new suggestion that conflict may
influence ERPs at multiple levels of stimulus and response processing appears to allow for the possibility that the ERN and CRN, as
well as the stimulus-locked N2, reflect conflict monitoring.

2.4. Motivational significance theory

A major shortcoming of existing computational models is that they do not account for motivational and individual differences.
Errors are motivationally salient events that prompt psychophysiological changes that include skin conductance and heart rate
deceleration (Hajcak et al., 2003b; Hajcak, McDonald, & Simons, 2004). Although these peripheral responses are consistent with
both a defensive and orienting response, a recent study from our lab found that the defensive startle reflex was larger following
errors than correct responses (Hajcak & Foti, 2008). In fact, Hajcak and Foti found that the ERN predicted degree towhich the startle
reflex was potentiated after errors. Collectively, these data suggest that the ERN might reflect error-detection that is utilized for
motivational ends. Thus, amplitude of the ERN might relate to the significance of an error. This possibility was first suggested by
Gehring et al. (1993) who reported that the amplitude of the ERNwas larger when an error was made when participants were told
to be more accurate, whereas the ERN was smaller when participants were told to respond faster. Therefore, by emphasizing
accuracy, the authors could have made errors more salient which in turn could have made them more important or negative
(Hajcak, Moser, Yeung, & Simons, 2005).

Additional studies suggest a role for motivational significance in modulating amplitude of the ERN. One study used two
different paradigms to assess motivational effects on ERN amplitude: a Flankers task inwhich subjects could either win or lose 5 or
100 points, and a Flankers task administered under conditions of performance evaluation (Hajcak et al., 2005). In both of these
experiments, errors associated with amotivationally significant context (i.e., losing 100 points or being evaluated) coincidedwith a
larger ERN amplitude compared to the other conditions. More recent studies replicate these results and indicate thatmore valuable
or significant errors result in a larger ERN (Chiu & Deldin, 2007; Kim, Iwaki, Uno, & Fujita, 2005).

The motivational significance view of the ERN is often discussed in terms of affective processes as well. Vidal et al. (2000)
suggested that the ERN may be influenced by an individual's emotional reaction to errors. Interestingly, one study found that
motivational significance was only influential in the magnitude of the ERN in individuals with certain personality traits (Pailing &
Segalowitz, 2004). For example, individuals rating high on conscientiousness and low on neuroticism had smaller motivation-
related effects on ERN amplitude.

3. Error-monitoring and individual differences

3.1. Error monitoring and age

A number of studies have examined developmental changes in the ERN. In a large study that examined the ERN in children from
age 7 to 18, Davies and colleagues did not find an observable ERN in children younger than 12 (Davies, Segalowitz, & Gavin, 2004a,
2004b). Contrary to this, other studies have reported ERNs in children ranging in age from 7 to 11 (Hajcak, Franklin, Foa, & Simons,
2008; Kim, Iwaki, Imashioya, Uno, & Fujita, 2007; Wiersema, van der Meere, & Roeyers, 2007). Preliminary data from our lab
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provides evidence that ERNs are even present in children as young as 5, provided simple tasks are employed (Torpey, Hajcak, &
Klein, 2007). In regard to developmental trends in ERN amplitude, several researchers have reported smaller ERN amplitudes in
children (ages 7–18) compared to adults (Kim et al., 2007; Wiersema et al., 2007). The ERN has also been correlated with age,
suggesting that it increases with development (Hajcak et al., 2008).

One study showed that adolescents (ages 13–14) have comparable ERN amplitudes to adults (ages 23–24;Wiersema et al., 2007).
On the other hand, Ladouceur, Dahl, and Carter, (2004) found that the ERN amplitude was larger in late adolescents (ages 14–17)
compared to early adolescents (ages 9–14). Overall, these findings suggest that changes in ERN amplitude reflect developmental
changes in the brain, possibly reflecting the continued maturation of the medial prefrontal cortex, with increasing ERN amplitude
through childhood and adolescence that plateaus in late adolescents or early adulthood (Davies et al., 2004a, 2004b).

In older adults (ranging between ages 54 and 85), studies have consistently found decreased ERN amplitude when compared to
young adults (ranging between ages 18 and 28; Band & Kok, 2000; Falkenstein, Hoormann, & Hohnsbein, 2001; Mathalon et al.,
2003; Mathewson et al., 2005; Nieuwenhuis et al., 2002; Themanson et al., 2006). It is important to note, though, that some of
these findings may be confounded by behavioral differences, such as decreased accuracy in older adult groups (Band & Kok, 2000;
Mathewson et al., 2005; Nieuwenhuis et al., 2002).

Oneof the initial studies suggested that decreasedERNamplitude inolder adultsmay result fromadecreased ability to detect errors
(Band & Kok, 2000). Although this may be true in more difficult tasks, it is unclear why the ERN would be reduced when subjects
perform relatively simple tasks. Another suggestion is that decreased ERN amplitude is due to diminished dopaminergic function that
occurswithnormal aging (Nieuwenhuis et al., 2002). Likewise, decreasedERNamplitude in childrenmaybedue to neurodevelopment
of medial prefrontal cortex (Stuss,1992) and dopaminergic neurons that continues until early adulthood (Levitt, 2003; Segawa, 2000).
In supportof this view, the scalpdistributionof theERN in5–6yearolds appears tobemoreposterior compared to adults (Torpeyet al.,
2007), suggesting someanteriorization over the course of development. Therefore, it is possible that developmental changes inDA and
the prefrontal cortex across the life span are at the root of developmental changes in ERN amplitude.

3.2. Error-monitoring and psychopathology

3.2.1. ERN and anxiety
Consistent with the notion that obsessive–compulsive disorder might be characterized by abnormal actionmonitoring (Pitman,

1987), Gehring and colleagues first reported that patients with OCD had increased ERNs compared to age-matched controls
(Gehring, Himle, & Nisenson, 2000). This pattern of results has now been replicated (Johannes et al., 2001; Ruchsow et al., 2005),
and consistent results have also been reported in children with both generalized anxiety disorder (GAD) and OCD (Hajcak et al.,
2008; Ladouceur, Dahl, Birmaher, Axelson, & Ryan, 2006). Additionally, several fMRI studies have confirmed the findings of
increased error-related brain activity in OCD patients (Fitzgerald et al., 2005; Maltby, Tolin, Worhunsky, O'Keefe, & Kiehl, 2005;
Ursu, Stenger, Shear, Jones, & Carter, 2003). One study found increased ACC activity in both error and correct trials in OCD patients,
signifying an overall hyperactivity in the ACC during response monitoring (Ursu et al., 2003); similar results were reported in an
ERP study that showed both an increased ERN and CRN in high-OC subjects (Hajcak & Simons, 2002).

Hajcak et al. (2008) demonstrated that ERN amplitude does not change after successful treatment in pediatric OCD. These
findings have since been replicated in an additional report (Ladouceur, Dahl, Birmaher, Axelson, & Ryan, 2007). Another study that
examined state-related changes in anxiety with spider phobic individuals found that the ERN amplitude did not change during
symptom provocation with the presence of a tarantula (Moser et al., 2005). Combined, these studies suggest that the ERN is not
affected by state-related changes in anxious symptoms.

In support of this possibility, several studies have examined the ERNwith respect to personality traits that are closely related to
pathological anxiety. Two studies have found that subjects scoring high on negative affect have significantly larger ERN amplitudes
compared to subjects scoring low on negative affect (Hajcak, McDonald et al., 2004; Luu et al., 2000). Additionally, pathological
worry has been associated with increased ERN amplitude (Hajcak, McDonald, & Simons, 2003a). An fMRI study similarly found
increased ACC activity on error trials in individuals with high trait anxiety (Paulus, Feinstein, Simmons, & Stein, 2004).

Other evidence suggests that negative affect is strongly related to individual differences in punishment sensitivity (Carver &
White, 1994; Watson, Wiese, Validya, & Tellegen, 1999). Two studies have examined behavioral inhibition system (BIS) and
behavioral activation system (BAS) scores relative to ERN amplitude (Amodio, Master et al., 2008; Boksem, Tops, Wester, Meijman,
& Lorist, 2006). BIS and BAS scores are thought to represent punishment sensitivity and reward seeking, respectively (Carver &
White, 1994; Gray, 1972, 1981). Consistent with the notion that errors are aversive, both Boksem et al. (2006) and Amodio et al.
(2007) found that subjects with high BIS scores also had larger ERNs. BIS and BAS traits relate to biases towards reactive and
proactive control respectively (Boksem et al., 2006; Braver, Gray, & Burgess, 2007; Gray & Braver, 2002), and may also relate to
learning style. For example, another study found that participants who learned by avoiding negative events (i.e., reactive control)
had larger ERNs than individuals who learned from positive events (i.e., proactive control; Frank, Woroch, & Curran, 2005).

3.2.2. ERN and depression
Depressed individuals exhibit increased sensitivity to mistakes and negative feedback (Elliott, Sahakian, Michael, Paykel, &

Dolan, 1998; Steffens, Wagner, Levy, Horn, & Krishnan, 2001). Individuals endorsing depressive symptoms were shown to have
decreased accuracy after incorrect compared to correct trials, which is evidence of poor performance adjustments following errors
(Holmes & Pizzagalli, 2007; Pizzagalli, Peccoralo, Davidson, & Cohen, 2006). A negatively biased view of the environment is also
thought to be a strong factor in the development of depression (Beck, 1967; Leppanen, 2006). Depressed individuals accurately
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judged the number of error responses they made, but underestimated the number of correct responses in a working memory task
(Dunn, Dalgleish, Lawrence, & Ogilvie, 2007).

In line with these negative processing biases, depressed individuals also exhibit abnormal error-related activity. For example,
while performing a Stroop task, depressed subjects had greater ERN amplitude compared to controls (Holmes & Pizzagalli, 2008).
Additionally, while performing a Flanker's task, depressed subjects had greater ERN amplitude in neutral and punishment
conditions compared to controls, but no difference in ERN amplitude during a reward condition which supports the notion that
depressed individuals are especially sensitive to punishment (Chiu & Deldin, 2007). An fMRI study likewise found increased rostral
ACC activity in depressed patients compared to controls on error trials (Steele, Meyer, & Ebmeier, 2004).

Conceptually, both anxiety and depression appear to be characterized by an increased sensitivity to committing errors —

consistent with studies that report an increased ERN in relation to anxiety and depression. In fact, Hajcak et al. (2004) argued that
abnormal ERN amplitude may not be specific to pathological conditions of depression or pathological anxiety, but rather reflect an
underlying characteristic that is central to both of these disorders — negative affect (cf., Luu et al., 2000). However, an alternative
possibility is that the ERN is increased in all forms of psychopathology. Next, we review evidence that the ERN shows an opposite
pattern of effects in disorders characterized by insensitivity to errors and other forms of punishment — namely substance abuse.

3.2.3. ERN and substance abuse
In the only study to date that has examined the ERN in relation to substance abuse, Franken and colleagues found that cocaine

dependent patients had decreased ERN amplitudes compared to a control group (Franken, van Strien, Franzek, & van deWetering,
2007). The relation between substances of abuse and error monitoring has also has also been studied by acutely administering
alcohol to healthy volunteers. Both low and moderate doses of alcohol decrease ERN amplitude in healthy individuals (Easdon,
Izenberg, Armilio, Yu, & Alain, 2005; Ridderinkhof et al., 2002). However, no studies to date have looked at state-related ERN
changes in substance abusers.

Imaging studies, however, support the notion that substance abusers, regardless of what drugs they abuse, exhibit reduced
error-related ACC activity. For example studies have found decreased error-related ACC activity in individuals who use marijuana
(Gruber & Yurgelun-Todd, 2005), opiates (Forman et al., 2004), cocaine (Goldstein et al., 2007; Kaufman, Ross, Stein, & Garavan,
2003) and methamphetamine (London et al., 2005). Overall, these results suggest that individuals with substance abuse may have
a decrement in error-processing, although more ERP studies are required to examine this with specific regard to the ERN.

A hallmark personality characteristic in substance abuse is impulsivity (Moeller et al., 2001) which is often characterized by
enhanced sensitivity to reward and reduced sensitivity to punishment (Corr, 2002; Monterosso & Ainslie, 1999). Similarly, those at
risk for developing substance abuse disorders are more sensitive to rewards than punishment (Finn, Kessler, & Hussong, 1994) and
are particularly insensitive to long-term negative consequences which are usually dismissed in favor of short-term rewards (Grant,
Contoreggi, & London, 2000; Petry, Bickel, & Arnett, 1998).

Consistent with the suggestion that impulsivity is related to increased sensitivity to reward and decreased sensitivity to
punishment (Corr, 2002; Monterosso & Ainslie, 1999), studies show that individuals who score high on impulsivity scales have
decreased ERN amplitudes in response to errors (Potts, George, Martin, & Barratt, 2006; Ruchsow, Spitzer, Gron, Grothe, & Kiefer,
2005). Other studies have found similar results using more indirect measures of impulsivity. For example, individuals
characterized as externalizing often have impulsive control problems (Krueger, Hicks, Patrick, & Carlson, 2002; Krueger, Markon,
Patrick, & Iacono, 2005). As expected, high externalizing individuals also had smaller ERN amplitudes (Hall, Bernat, & Patrick,
2007).

Overall then, increased ERNs appear specific to disorders such as anxiety and depression, whereas decreased ERNs have been
reported in individuals with substance abuse and impulsive personality characteristics. This pattern of increased and decreased
ERNs fit well within contemporary models of psychopathology that posit two higher-order factors of psychopathology (Krueger,
1999): specifically, internalizing and externalizing disorders might be characterized by hyperactive and hypoactive error-
processing, respectively, as indexed by the ERN.

3.6. Summary

ERN is a reliable index of error-processing, evident just 50 ms after individuals make mistakes; the available evidence indicates
that the ERN is generated in the ACC, and likely reflects dopaminergic activity related to the on-going evaluation of errors and
response conflict (Holroyd & Coles, 2002; Yeung et al., 2004). There is increasing evidence that ERN also relates to motivational and
affective variables, andmight be tied to neural systems that support defensive behaviors and avoidance learning (Frank et al., 2005;
Hajcak & Foti, 2008).

Individuals with internalizing disorders, characterized by increased sensitivity to errors (i.e., anxiety and depression), are
characterized by increased ERNs. Similar results are found in personality traits closely related to internalizing forms of
psychopathology: individuals that score high in negative affect, anxiety, worry, and behavioral inhibition all have increased ERN
amplitudes (e.g., Amodio, Master et al., 2008; Boksem et al., 2006; Hajcak et al., 2003a; Hajcak, McDonald et al., 2004). Moreover, it
appears that state-related changes in anxiety do not have a corresponding influence on the ERN (Hajcak et al., 2007; Moser et al.,
2005). Collectively, these results support the notion that abnormalities of the ERN are related to stable characteristics related to
internalizing disorders.

Externalizing disorders, on the other hand, are characterized by impulsivity and behaviors that go against societal norms
(Krueger, Caspi, Moffitt, & Silva, 1998; Krueger, Markon, Patrick, Benning, & Kramer, 2007). Individuals with substance abuse
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problems are often typified by impulsive behaviors (Moeller et al., 2001) and often make decisions that result in short-term
rewards at the expense of long-term negative consequences (Grant et al., 2000; Petry et al., 1998). Psychophysiological and imaging
studies confirm that individuals with substance abuse disorders have decreased ERN amplitude (Franken et al., 2007) and error-
related brain activation (i.e., Goldstein et al., 2007), indicating that these individuals are less sensitive to errors.

Personality traits, such as impulsivity, that are associated with externalizing are characterized by a similar reduction in the ERN
(e.g., Potts et al., 2006); along similar lines, individuals who are characterized by insensitivity to punishment have reduced ERNs in
the context of punishment but not reward (Dikman & Allen, 2000). These results support the notion that a reduced ERN appears
related to the externalizing dimension of personality and psychopathology.

4. Conclusions and future directions

We have previously proposed that the ERNmight be a useful endophenotype for internalizing disorders (Hajcak et al., 2008). In
particular, the ERN might reflect information-processing abnormalities that mediate the pathway between genetic predisposition
and disease states (Gottesman & Gould, 2003). Gottesmann and Gould (2003) highlighted several characteristics of
endophenotypes. First, an endophenotype should be associated with a disease. Several studies have shown that increased
error-related brain activity characterizes patients with anxious (Gehring et al., 2000; Hajcak et al., 2003a; Hajcak, McDonald et al.,
2004; Hajcak & Simons, 2002; Ruchsow, Spitzer et al., 2005) and depressive symptoms (Chiu & Deldin, 2007). Additionally, an
endophenotype should be state-independent. This has been verified in anxiety disorders, with studies showing no change in ERN
amplitude during symptom provocation (Moser et al., 2005) or after successful treatment (Hajcak et al., 2008; Ladouceur et al.,
2007). To our knowledge, though, there have been no research studies to date that have looked at state changes in symptoms of
depressed patients. Endophenotypes must also be heritable. Anokhin, Golosheykin, and Heath (2008) indicate that error-related
brain activity is heritable, with estimates in the range of .50. Also, endophenotypes should be more evident in unaffected first-
degree family members of patients compared to first-degree family members of non-patients. This has not been assessed, as of yet,
and is certainly an important topic for future study.

Of course, the present review highlights the possibility that a reduced ERN might also relate to the externalizing dimension of
personality and psychopathology; however, further research needs to be done to confirm and extend these findings. Future studies
might clarify other remaining issues. For example, more studies are needed to assess changes in ERN amplitude after successful
treatment in order to tease apart state and trait influences on the ERN. Some studies have already suggested that trait-related
differences in anxiety relate to an increased ERN, whereas no studies have similarly examined the impact of state-related
depressive changes on the ERN. Finally, longitudinal studies beginning in childhood are necessary to examine the ERN in children
prior to the development of psychiatric disorders to establish a time-line for when differences in ERN amplitude begin to signify
risk.

Although many psychiatric disorders can be categorized into the internalizing–externalizing dimension, psychotic disorders
such as schizophrenia do not fit well within this model— and questions remains as towhether or not psychotic disorders represent
an entirely unique dimension (see Krueger & Tackett, 2003). Interestingly, the literature suggests that individuals with
schizophrenia represent a unique dimension: in contrast with the internalizing and externalizing dimensions characterized by
increased and decreased error-sensitivity, respectively, schizophrenia is characterized by a general inability to self-monitor
(Malenka, Angel, Hampton, & Berger, 1982; Stirling, Hellewell, & Quraishi, 1998).

Although most studies indicate that individuals with schizophrenia have smaller ERN amplitudes (Alain, McNeely, He,
Christensen, & West, 2002; Bates, Kiehl, Laurens, & Liddle, 2002; Bates, Liddle, Kiehl, & Ngan, 2004; Kim et al., 2006; Morris,
Heerey, Gold, & Holroyd, 2007; Morris, Yee, & Nuechterlein, 2006), some evidence suggests that individuals with schizophrenia
also have larger CRN amplitudes that are comparable in magnitude to their ERNs (Mathalon et al., 2002; Morris et al., 2006). These
findings are similar to what is seen in individuals with prefrontal cortex lesions who have no difference between their ERN and
CRN amplitudes (Gehring & Knight, 2000). The similarities between schizophrenia and prefrontal cortex lesion patients are not
surprising as deficits in the prefrontal cortex are thought to contribute to the etiology of schizophrenia (Galderisi et al., 2008;
Zhou et al., 2007). One difference between these two groups is that PFC lesion patients have normal ERN amplitudes, whereas
schizophrenia patients have smaller ERN amplitudes. During errors of commission, schizophrenic patients had a decreased
hemodynamic response in the ACC (Carter, MacDonald, Ross, & Stenger, 2001) and more specifically in the rostral ACC (Laurens,
Ngan, Bates, Kiehl, & Liddle, 2003). Additionally, studies suggest that schizophrenia is also characterized by decreased structure
and function of the ACC (Zetzsche et al., 2007). Future studies should investigate both the ERN and the CRN in schizophrenia to
determine whether changes in both of these components represent a general inability of individuals with schizophrenia to self-
monitor. It is of interest to note that there is an abundant literature on the P300 component in schizophrenia which suggests
that deficits in attention may impact task performance and related psychophysiological measures (see Ford, 1999 for a review).
Thus, ERN findings may result from a more general deficit found in schizophrenia rather than being specific to response
monitoring.
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